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M DO Definition

Multidisciplinary Design Optimization (MDO) isa
methodology for the design of complex engineering systems

and subsystems that coherently exploits the
synergism of mutually interacting phenomena
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MDO Conceptual Elements

Information Science Design-Oriented MD Obtimization
& Technology MD Analysis P
Product Data Mathematical Discipline
Models Modeling Optimization
Data & S/W Cost vs. Accuracy Optimization
Standards Trade-off Procedures

Data Management, Smart Design Space
Storage & Visualization Reanalysis Search

S/W Engineering iti
_ - - Decomposition
Practices Approximations
Human Sensitivity
Interface Analysis
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Product Data Model Example
(CAD Parametric Geometry Model)




Sengitivity Analysis

o Computing derivatives of objective with respect to the
design variables

e Methods

— Finite differences
* time consuming
o difficult to pick D

— Analytic
 hardto code
 changes with each application
o fast

— Automatic differentation
e easy touse
e accurate
e can be time consuming
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Automatic Differentiation of 3-Dimensional
Navier-Stokes Flow Code (CFL3D)

High Speed Civil Transport

TC
Mach Number=2.4, a = 1°

Wing Planform Aerodynamic Coefficients

Design Variables , 95 CL Lift
(DV) X Cob Drag
1S Cy Side Force
| CMy  Pitching Moment
- -
RC

Sensitivity Derivatives - Derivatives of Aerodynamic Coefficients
With Respect to Wing Planform Variables

fCL 9CD fqCy fTCMy
{ODv DV DV DV

: . L ;[ liqits of ;
Automatic Differentiation (Residual reduced 4 orders) = 10.75 units
Finite Difference Method (Residual reduced 11 orders) = 15.00 units
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Optimization Procedures

iteration

Direct Interface

analysis

l

sensitivity

|

optimizer
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Indirect Interface Using
Approximations

cycle

= analysis
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sensitivity
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Decomposition

System Level Optimization
(Coordinates Subproblems)

Information Flow

Aerodynamics
Optimization
Subproblem

Structures
Optimization
Subproblem

Other Discipline
Optimization
Subproblem
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Preliminary Design

o Conventional Process
— CAD-based geometry
o surface
 interna layout
— Higher-order analysis
« CFD
e Finite Element
— Discipline analysis & optimization
» sequential or loosaly coupled
 discipline-based figure of merits (i.e., weight, thrust, drag, lift, etc.)
 Emerging MD Enhancements
— Parametric CAD definition
— Fully coupled multidiscipline analysis
— Multidisciplinary optimization
* Figures of merit

— system performance and cost
— multi-objective
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Requirements for MDO Enhancements of Preliminary Design

e Information Science & Technology
— heavy duty hardware; fast CPU(S), large memory & disk space
— common parametric geometry model
— software support
* integration of proprietary, legacy, commercial, and research codes
— code robustness, compatibility, & low agorithm noise
 configuration control and data management
« collaborative work environment; person-person/machine
e Design-Oriented MD Analysis
— well posed interfaces for disciplines
» automated grid generation (CFD, FEM)
— discipline & MD sengitivities
e MD Optimization
— MDO problem definition
» design variables, objective(s), constraints
— MDO strategy
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Preliminary MDO Examples

o Aerospike Rocket Nozzle
— Direct Optimization Approach

o High-Speed Civil Transport (HSCT)
— Approximation Optimization Approach
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MDO Applied to
Aerospike Nozzle Design

Multidisciplinary Optimization 3ra
NASA Langley Research Center
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Aerospike Engine
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Aerospike MDO Problem

» Objective
* minimize Vehicle Gross-Lift-Off Weight

* Design Parameters
* 5 geometry variables
e 13 structural variables
e Constraints
e Stresses < allowable
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Aerospike MDO Domain Decomposition

GLOW Contours

_?T/ TRAJECTORY DOMAIN

BASEFLOW
MODEL DOMAIN

FEM STRUCTURES
DOMAIN

CFD-96-OPTIMIZATION DISK/WWF
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Aerospike Nozzle Structural Design Parameters

Aerod ynamic pressurne
bo:auli e

Inner cold wall thickness

Cruuter hot wall thicknecss

Support russes

Shedl stiffen or radius and thickness
Thickness and radius

. 24 Y T —Longinudinal web
* thickmess
Bace pressure
losad
Heeamn sections
H1
==y A
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Aerospike Nozzle Optimization

Sequential Optimization

(Single Discipline Only) Multidisciplinary Optimization
Aerodynamics
Maximize Thrust In.tegrated
{ Aerodynamics and Structures
Structura l
Minimize Weight —— : :
l Minimize Gross-Lift-Off Weight

Base-line Solution
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Aerospike Objective Function
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MDO Applied to High-Speed Civil Transport (HSCT)
Using FIDO

Mach 2.4 at 55,000 ft
6000-mile range
250 passengers

Framework for Interdisciplinary Design Optimization (FIDO) 20
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Environment
Heterogeneous Distributed Computing

Workstation Vector 1 &
computer

computer
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FIDO Execution System

. Aerodynamics

) Performance I s
. Optimization -
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HSCT MDO Problem Diagram

light Conditions Design Variabl e <g—
1
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Key Stepsin FIDO Aeroelastic L oop

Initial Shape from Design Variables

“Converged Shape”

Surface Shape : __________ ! 4 Surface Pressures )
MOdiﬁcationS ...................... |> ADVMOD :
|
. Y |
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Generatlon ................. |> VOLUME |
' |
i Y
Euler CFD  vooeeeeeeeeeeieeiieeii] ']  ISAAC '
! ! ~ : N
| * | FEM Deflections
Loads Transfer : ! '
Aero to Structures T :"’ TRNSD ! B - - 4
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Aircraft Weight, |bs.

HSCT Design Optimization

4.0E+05 - DEPENDENT DESIGN VARIABLES
tinbg = CO +C1(1-b) + C2 (1-b)2
toutbd = Co *+C3(1- b) + C4(1-b)2
3.8E+05 - INDEPENDENT DESIGN VARIABLES
b-10
- t outbd
3.5E+05 -
- t inbd

OBJECTIVE FUNCTION
3.2E+05 -| Weight

CONSTRAINTS
Yinbd =f(K-S)
Youtbd = f(K-S)
00—
5 10 15 20
Cycle Number
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Concluding Remarks

« MDO is much broader than just MD-Analysis; it contains el ements
from information sciences, design-oriented analysis and
optimization methods

« The“Dypo  ISthe improvement in design obtained from
multidisciplinary synergy of the disciplines as demonstrated by the
Aerospike nozzle application

« Application of MDO to preliminary design requires sophistication
In the computational infrastructure and MDO algorithms

e Adoption of MDO in industry design process requires
demonstrations which quantify

— “Dypo Improvement in design
— reduction in time and effort in the design process
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